Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis

نویسندگان

  • Miin-Shen Yang
  • Chien-Yo Lai
چکیده

In this paper we propose a new approach, called a fuzzy class model for Poisson regression, in the analysis of heterogeneous count data. On the basis of fuzzy set concept and fuzzy classification maximum likelihood (FCML) procedures we create an FCML algorithm for fuzzy class Poisson regression models. Traditionally, the EM algorithm had been used for latent class regression models. Thus, the accuracy and effectiveness of EM and FCML algorithms for estimating the parameters are compared. The results show that the proposed FCML algorithm presents better accuracy and effectiveness and can be used as another good tool to regression analysis for heterogeneous count data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...

متن کامل

The Development of Deviant and Delinquent Behavior of Adolescents: Applications of Latent Class Growth Curves and Growth Mixture Models

The article presents applications of different growth mixture models considering unobserved heterogeneity within the framework of Mplus (Muthén and Muthén, 2001, 2004). Latent class growth mixture models are discussed under special consideration of count variables which can be incorporated into the mixture models via the Poisson and the zero-inflated Poisson model. Four-wave panel data from a G...

متن کامل

Fuzzy Class Logistic Regression Analysis

Distribution mixtures are used as models to analyze grouped data. The estimation of parameters is an important step for mixture distributions. The latent class model is generally used as the analysis of mixture distributions for discrete data. In this paper, we consider the parameter estimation for a mixture of logistic regression models. We know that the expectation maximization (EM) algorithm...

متن کامل

Marginalized mixture models for count data from multiple source populations

Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Rec...

متن کامل

Using Regression based Control Limits and Probability Mixture Models for Monitoring Customer Behavior

In order to achieve the maximum flexibility in adaptation to ever changing customer’s expectations in customer relationship management, appropriate measures of customer behavior should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior intention to repurchase or visit again are suitable means taking into account the heterogeneity across customers. In the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2005